CO₂ mitigation potential from space and water heating in the Hungarian public buildings

Center for Climate Change and Sustainable Energy Policy

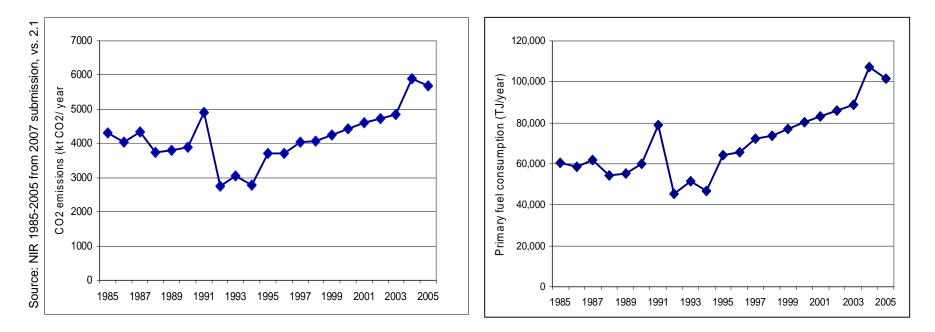
CENTRAL EUROPEAN UNIVERSITY

Katarina Korytarova and Diana Ürge-Vorsatz

Szeged, 16-17 April 2009

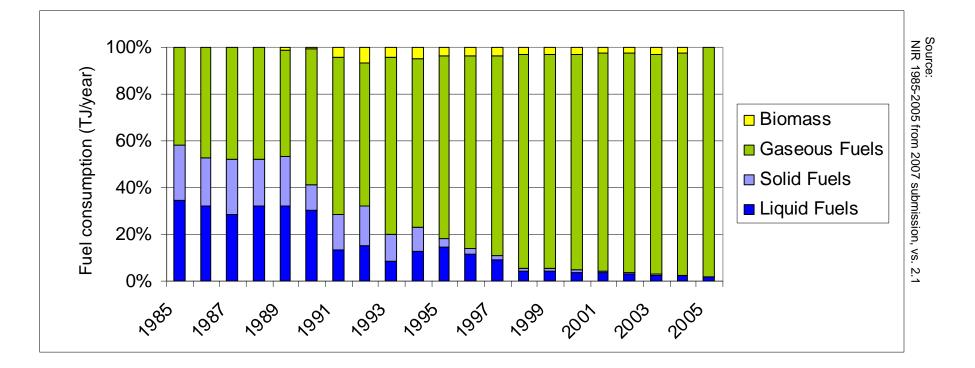
Overview

Background – CO₂ emissions and energy consumption


Methodology

Preliminary findings

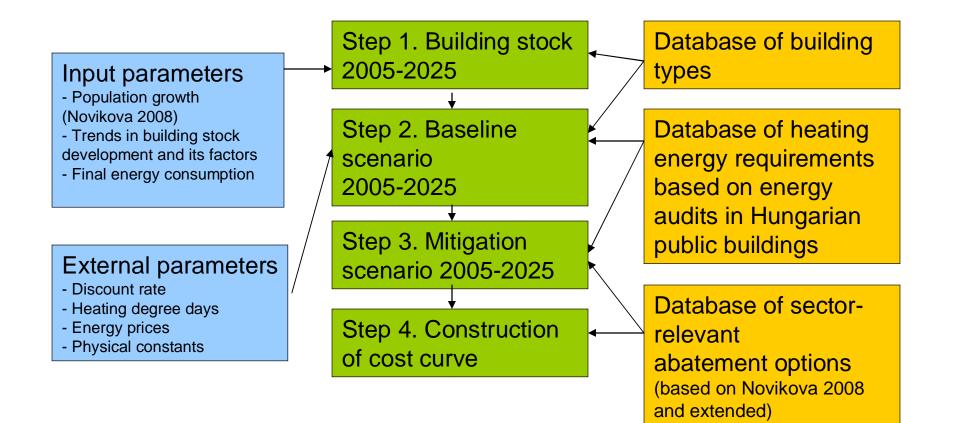
Conclusions and recommendations


CO₂ emissions & use of primary energy in the Hungarian tertiary sector

□ In the period 1985-2005 the CO₂ emissions as well as primary fuel consumption increased in total by cca. 30%

Trends in energy use in the Hungarian tertiary sector

While share of the natural gas increased by one third (1985-2005), share of non-gas primary fuels decreased substantially in the same period.


3CSEP

Methodology

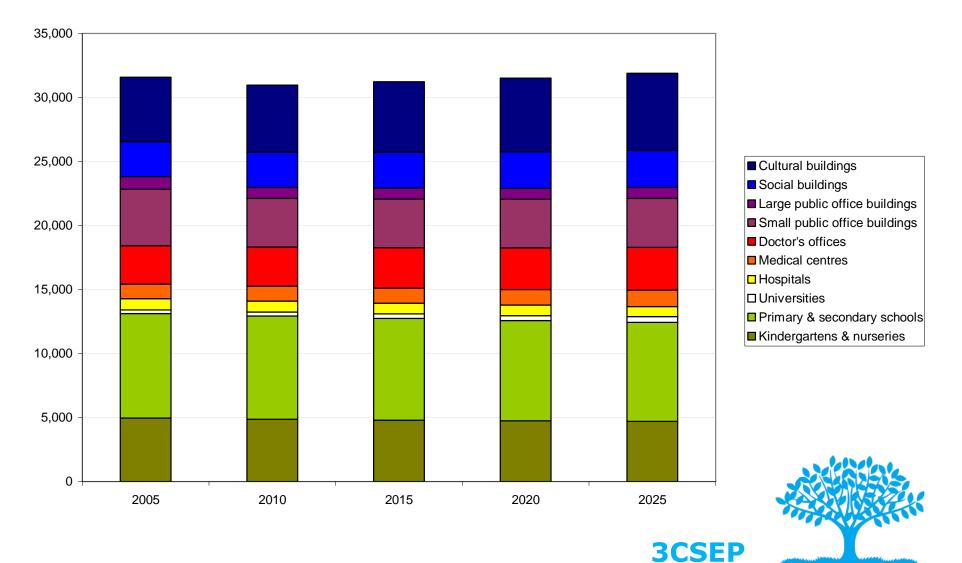
- Bottom-up technology-based model
- Modeling framework based on residential model of Novikova (2008) with all input data and assumptions adjusted to public buildings
- Mitigation potential is estimated through the 'cost curve' method
- In the study are considered the most cost-efficient abatement options and options with the largest mitigation potential based on the database of Novikova (2008) adjusted and extended for the needs of public sector
- Options for existing buildings:
 - temperature management, hot water demand reduction, highperformance building envelope, boilers with increased efficiency
- Options for new construction:
 - Passive house standard

Methodological steps

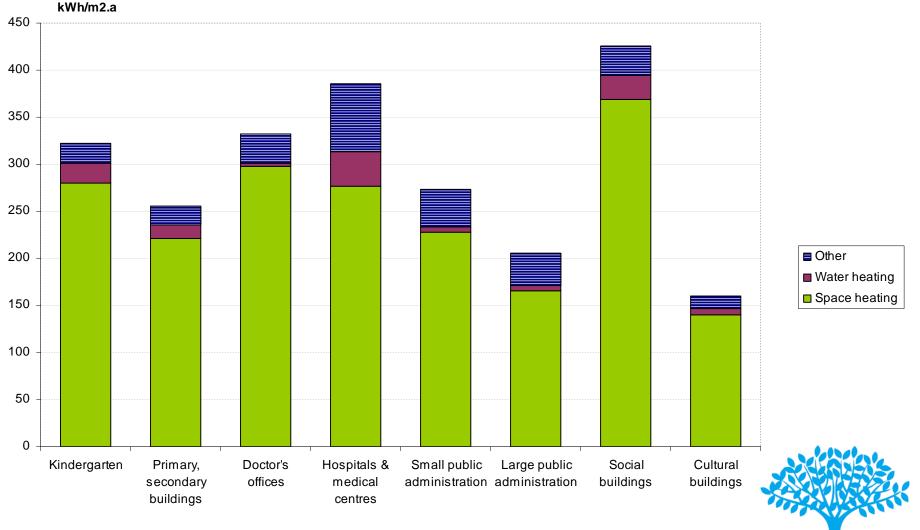
Data sources

Building stock projections: KSH (2000-2005)

- Building typologies: Ürge-Vorsatz et al (2000) and energy audits (below)
- Average heating energy requirements: based on set of audits:
 - UNDP/GEF Hungary Public Sector Energy Efficiency Project,
 - Display campaign (2008),
 - Csoknyai (2008)


First results: Hungarian public buildings

Classification of public buildings in 2005


2005	Number of buildings	Number of buildings	Floor area (m2)	Floor area (%)
Educational	13,409	24%	15,193	29%
Kindergartens & nurseries	4,963	9%	2,485	5%
Primary and secondary schools	8,160	15%	11,137	22%
Universities	286	1%	1,572	3%
Health	5,005	9%	11,650	23%
Hospitals & Buildings for confined to bed	881	2%	4,228	8%
Doctor's offices & ambulance stations	2,988	5%	1,970	4%
Medical centres	1,136	2%	5,453	11%
Public Administration offices	5,403	10%	5,077	10%
Small public office buildings	4,407	8%	2,297	4%
Large public office buildings	995	2%	2,781	5%
Social buildings	2,735	5%	1,747	3%
Cultural buildings	5,021	9%	10,825	21%
Other (assumed non-heated)	23,691	43%	7,107	14%
Total	55,264		51,601	

Note: the floor area of Other is an estimate due to lack of data.

Building stock of the Hungarian public buildings 2005-2025

Average heating energy requirements per building type

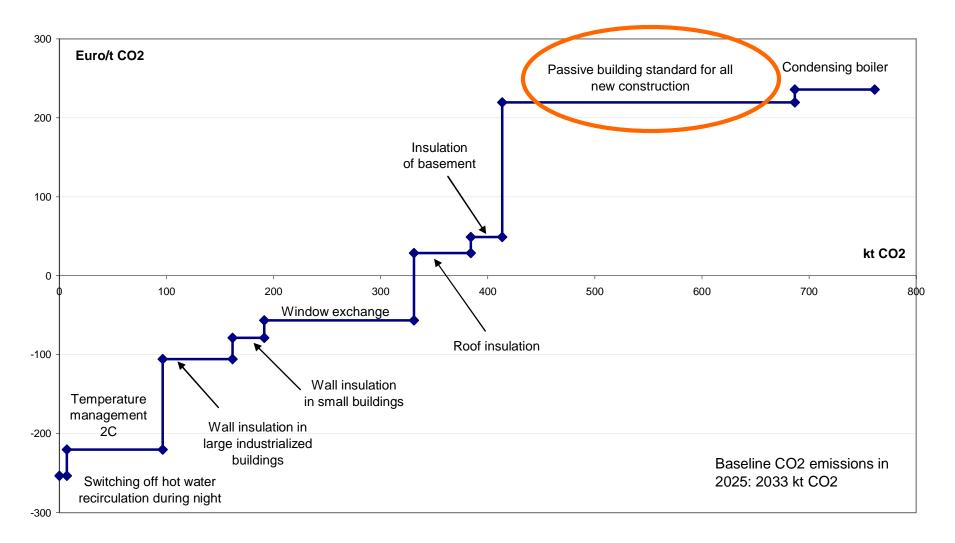
3CSEP

CO₂ mitigation potential in 2025, cumulative investments and saved energy costs

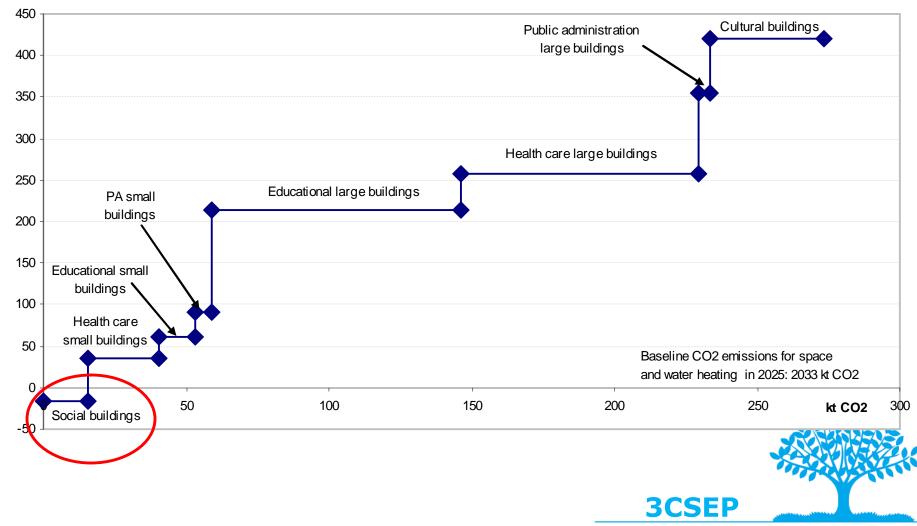
Total mitigation potential: 761 kt CO2 (37% of the SWH baseline CO2 emissions) Total energy savings: 3.8 TWh

	CO2 savings in 2025	Cumulative CO2 savings in 2025		Energy savings in 2025	Cumulative energy savings in 2025	CCE in 2025	Cumulative invest-ments 2008-2025	Cumulative saved energy costs 2008- 2025
Measure	kt CO2	kt CO2	EUR/tCO2	GWh/yr.	GWh/yr.	EUR/ kWh	million EUR	million EUR
Switching off DHW recirculation at night	7	7	-253	35	35	0.0003	0.12	16
Temperature management 2C	89	96	-220	446	481	0.01	38	223
Insulation of wall in large industrialized buildings	65	161	-106	325	806	0.03	171	369
Insulation of wall in small buildings	30	191	-79	147	953	0.03	249	433
Exchange of windows	140	331	-56	695	1648	0.04	627	769
Insulation of roof	53	384	29	264	1912	0.06	832	891
Insulation of basement	29	413	49	146	2058	0.06	953	958
Passive building standard	273	686	219	1374	3432	0.09	3114	1629
Condensing boiler	75	761	236	369	3801	0.1	3530	1859

Note: the table shows aggregated results for technical options in all examined buildings.



Mitigation potential by cost categories


	CO ₂ abatement potential in 2025				Total	
					cumulative	Cumulative
					investment	energy cost
					s 2008-	savings
	Cumulative		By cost category		2025	2008-2025
	% baseline		% baseline			
CO ₂ mitigation potential in cost	of modeled	1000	of modeled	1000	million	million
categories	end-uses	tCO ₂ /yr.	end-uses	tCO ₂ /yr.	Euro	Euro
< 0 EURO	18.1%	367	18%	367	742	836
0 - 20 EURO*	18.4%	374	0.3%	7	770	853
20-100 EURO*	22.6%	459	4%	85	1171	1070
100 - 300 EURO*	35.0%	711	12%	252	2980	1703
>300 EURO*	37.4%	761	2%	50	3530	1859

Aggregated cost curve for Hungarian public buildings

Mitigation cost curves for application of passive house standard in new construction

Conclusions & recommendations (1)

- Public buildings offer significant share of cost-effective mitigation potential
- Processing of energy audits in the Hungarian public buildings shows large specific heating energy consumption in Hungarian public buildings and implies possible savings
- The most cost-effective options are:
 - Temperature management
 - Reduction of energy for water heating through switching off hot water recirculation during night
 - External wall insulation & windows replacement
 - Insulation of other building components (basement & roof)
 - Passive house application for new construction
 - Installation of condensing boiler

Conclusions & recommendations (2)

- Nevertheless, the buildings have to be retrofitted holistically, not only via implementing low-cost options.
- Only thorough, complex retrofit, "including the simultaneous insulation of walls, exchange of windows and renovation of heating systems provide better thermal performance and less risk of fabric damages" (Zöld and Csoknyai, 2007).
- Retrofit of the existing buildings to the lowest possible levels should be promoted right from the beginning and thus not leaving room for energy inefficiency trapped in sub-optimal retrofits.
- There are first examples of both passive new construction and passive retrofit in the Hungarian public buildings (e.g. retrofit of the REC centre, plan for "green" governmental district, retrofit of Pecs museum).
- To lower additional costs of passive construction in Hungary, one should support the conditions for passive construction businesses.
- To ensure that low-energy & passive buildings function as designed, commissioning, an overall check of the installed equipment, should be performed both in major retrofits and new constructions.

Acknowledgements

Hungarian Ministry of Water and the Environment

- Carbon Dioxide Mitigation Potential in the Hungarian Public Sector (2008-2009);
- Greenhouse Gas Emission Scenarios and Emission Reduction Potentials in Hungary for 2007-2025 (2008-2009).
- UNDP and Energy centre, Budapest
 - facilitating utilization of the audits of the UNDP/GEF Hungary Public Sector Energy Efficiency Project
- Individual experts:

🗅 Tamas Csoknyai (BMI), Istvan Kovacsics (EGI)

3CSEP

Thank you for your attention!

Center for Climate Change and Sustainable Energy Policy

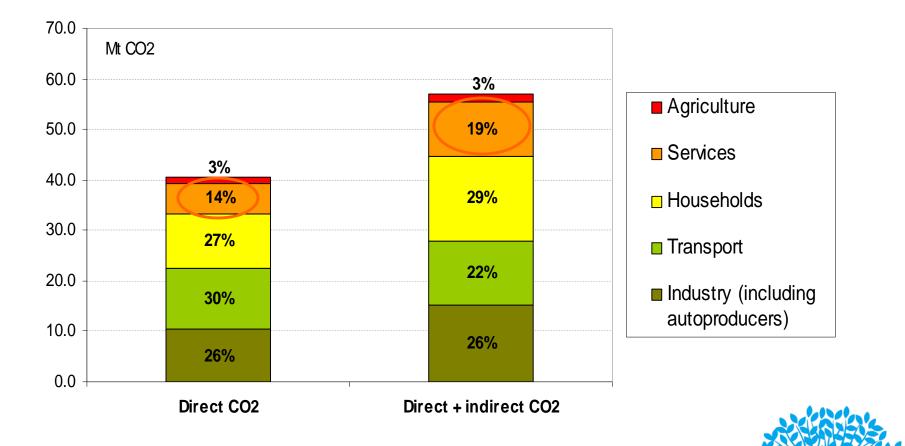
CENTRAL EUROPEAN UNIVERSITY

http://3csep.ceu.hu

Prof. Diana Ürge –Vorsatz: <u>vorsatzd@ceu.hu</u> Katarina Korytarova: <u>korytarova_katarina@phd.ceu.hu</u> Victoria Novikova: <u>novikova@phd.ceu.hu</u>

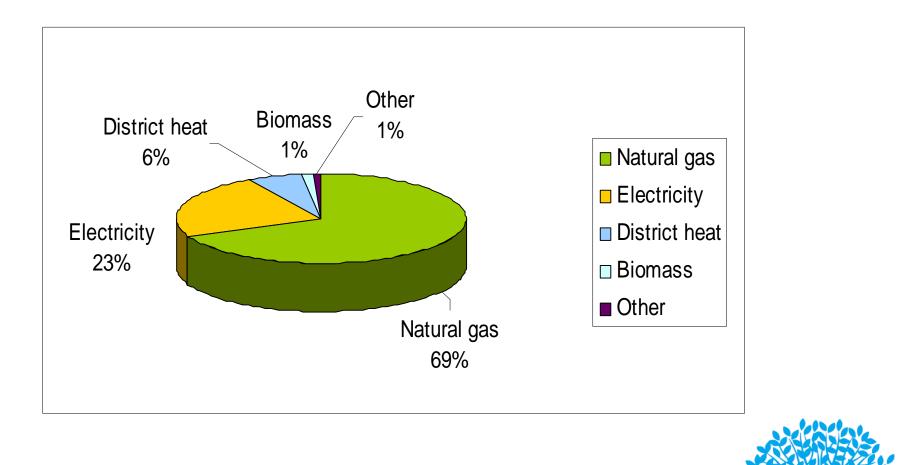
References

- Csoknyai, T. (2008) Energy audits 1998-1999. Courtesy of Csoknyai, Tamas, provided in August 2008.
- Display campaign (2008) Energy audits conducted in Nyiregyhaza within the Display campaign project in 2004-2006. Courtesy of Nagy, Peter, provided in September 2008.
- UNDP/Energy Centre (2008). Energy audits collected under the UNDP/GEF Hungary Public Sector Energy Efficiency Project in 2002-2008. Utilization of data approved by UNDP in 2008. Energy audits were accessed in Energy centre, Budapest.
- IEA (International Energy Agency). 2008. Energy Statistics of the OECD coutnries. IEA/OECD, Paris, 2008.
- Kistelegdi, István. 2009. Energiadizájn A pécsi Modern Magyar Képtár terve [Energy-design the Modern Hungarian Gallery project at Pécs] Conference presentation. February 5, 2009, Passzivház konferencia, Budapest.
- KSH (Központi Statistikai Hivatal) [Hungarian Statistical Central Office] 2000. The real property of the municipalities 2000.
- KSH (Központi Statistikai Hivatal) [Hungarian Statistical Central Office] 2005. The real property of the municipalities. Budapest, 31 December 2005.
- NIR (National Inventory Report) 2007. NIR 2007 submission, vs. 2.1. Available at: <u>http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/4</u> <u>303.php</u> [Last visited on 20 May 2008]
- Novikova, A. 2008. Carbon dioxide mitigation potential in the Hungarian residential sector. PhD dissertation. Central European University, Budapest, 2008. URL: http://web.ceu.hu/envsci/projects/Potentials/Publications.html
- ODYSSEE. 2009. Enerdata online. URL: <u>http://odyssee.enerdata.eu</u> [Accessed April 2, 2009]
- Ürge-Vorsatz, D. 2000. Lighting municipally financed buildings in Hungary. Market assessment. With special focus on energy efficiency potentials and barriers. Research Report. August, 2000.
- Workshop "Mitigation potential in the Hungarian buildings", Budapest, October, 6, 2008.
- Zöld, A. and Csoknyai, T. 2007. Technical improvement of housing envelopes in Hungary. In: COST C16 Improving the Quality of Existing Urban Building Envelopes Facades and Roofs. L. Braganca, C. Wetzel, V. Buhagiar, L.G.W.Verhoef (eds.) IOS Press, 2007.

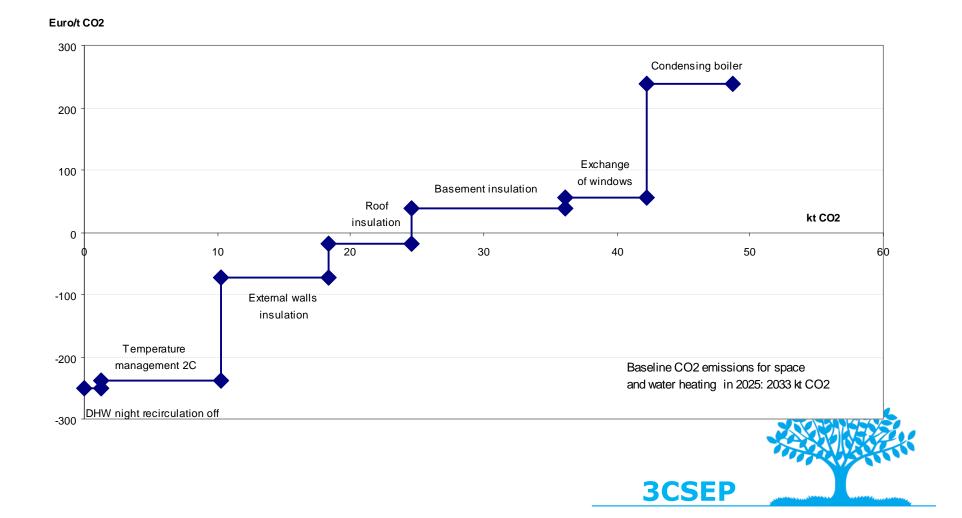


JUULI

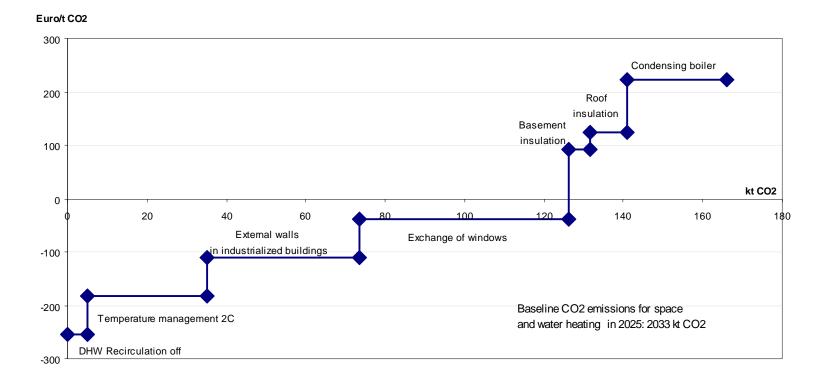
Background slides


CO₂ emissions in Hungarian tertiary sector

3CSEP

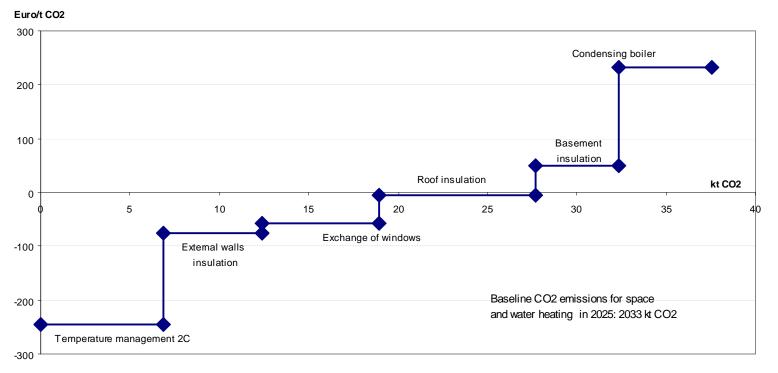

Source: ODYSSEE 2009. URL: http://odyssee.enerdata.eu

Final energy by fuel (2005)

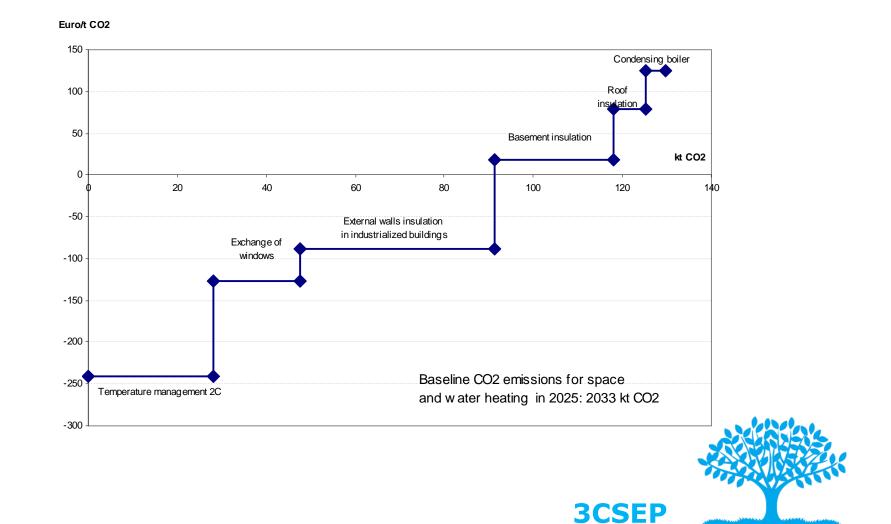


3CSEP

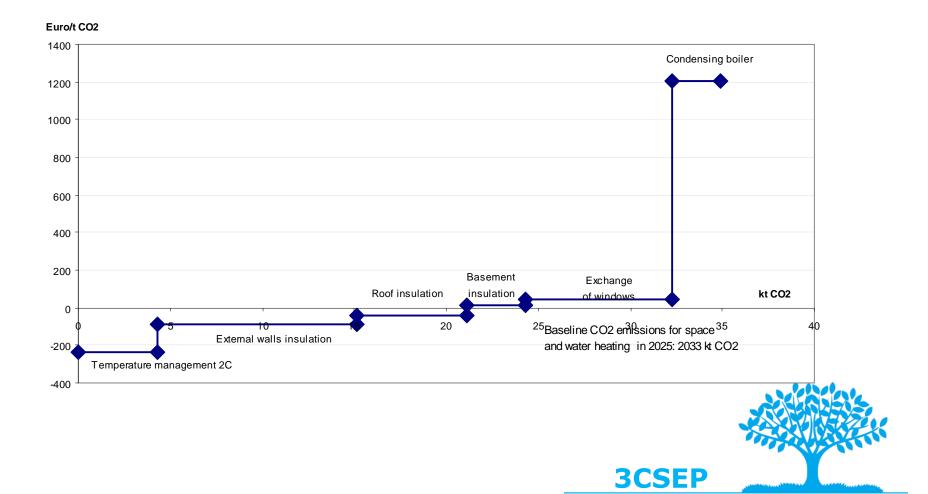
Mitigation cost curves for small educational buildings

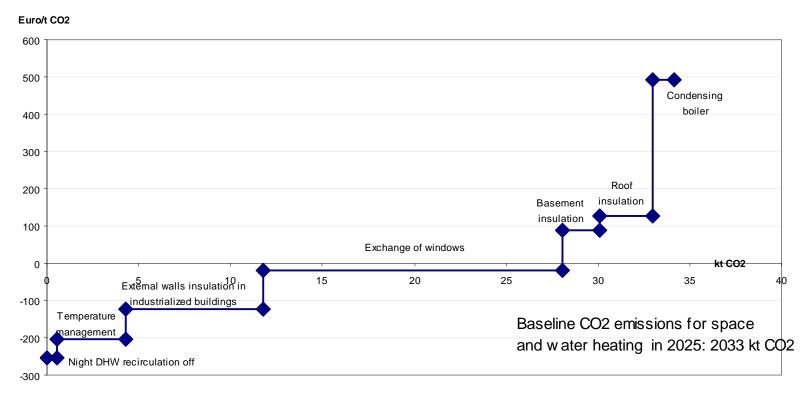


Mitigation cost curves for large educational buildings

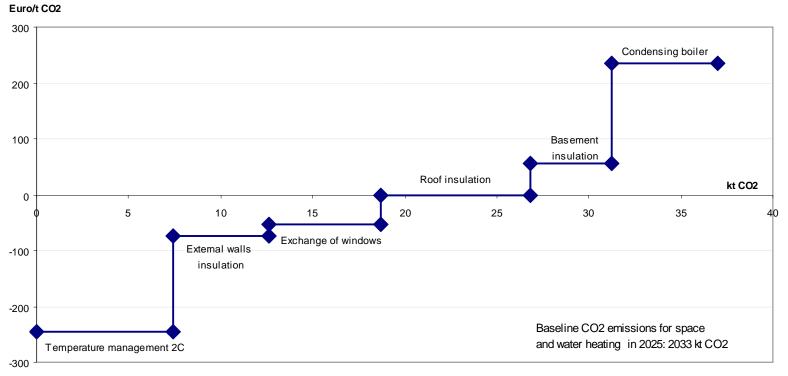


Mitigation cost curves for small health care buildings




Mitigation cost curves for large health care buildings

Mitigation cost curves for small public administration buildings



Mitigation cost curves for large public administration buildings

Mitigation cost curves for social buildings

