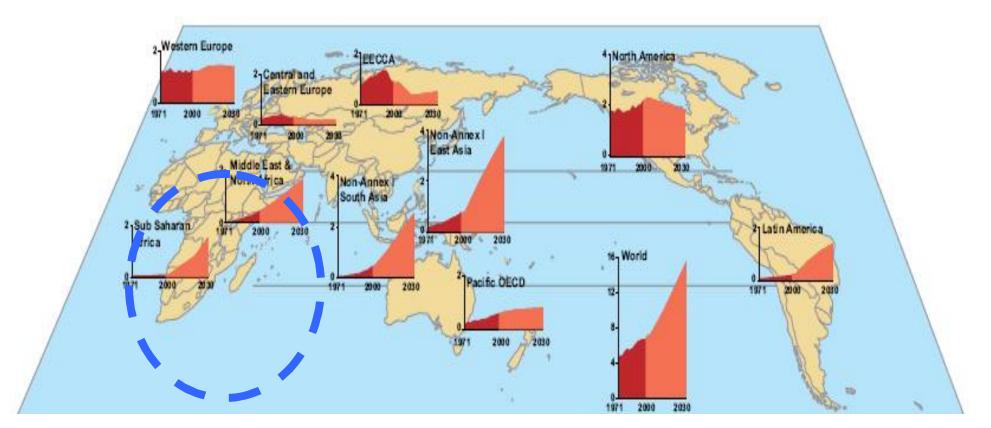


Mitigation opportunities in buildings *How can Africa benefit?*

Diana Ürge-Vorsatz Mark Levine

With Aleksandra Novikova

Nov l, Cape Town


Outline

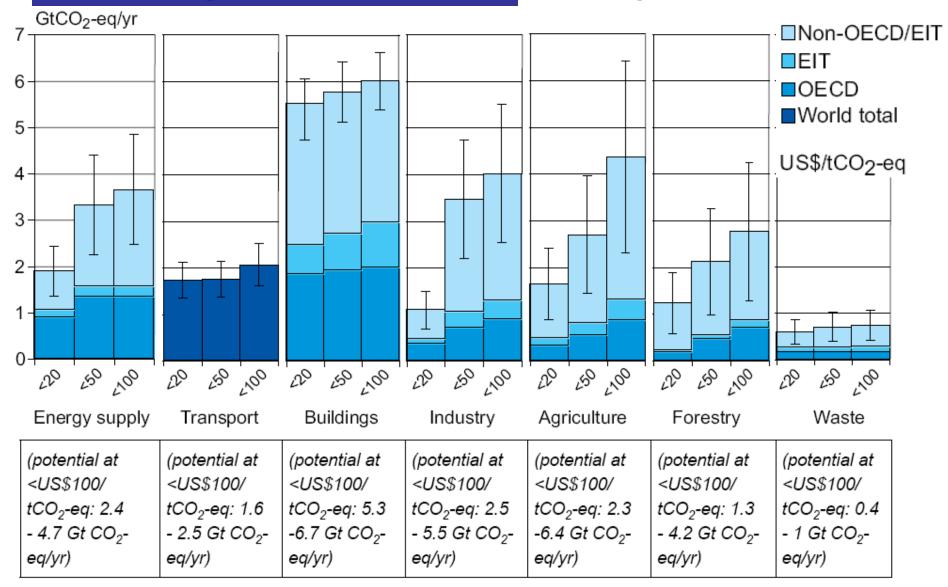
- Mitigation in the buildings sector: global and regional importance
- Potential and costs of GHG mitigation in buildings
- Co-benefits of GHG mitigation in bldgs: how can Africa benefit?
- Policies to improve energy-efficiency in Africa
- Conclusions

Buildings sector: global and regional importance

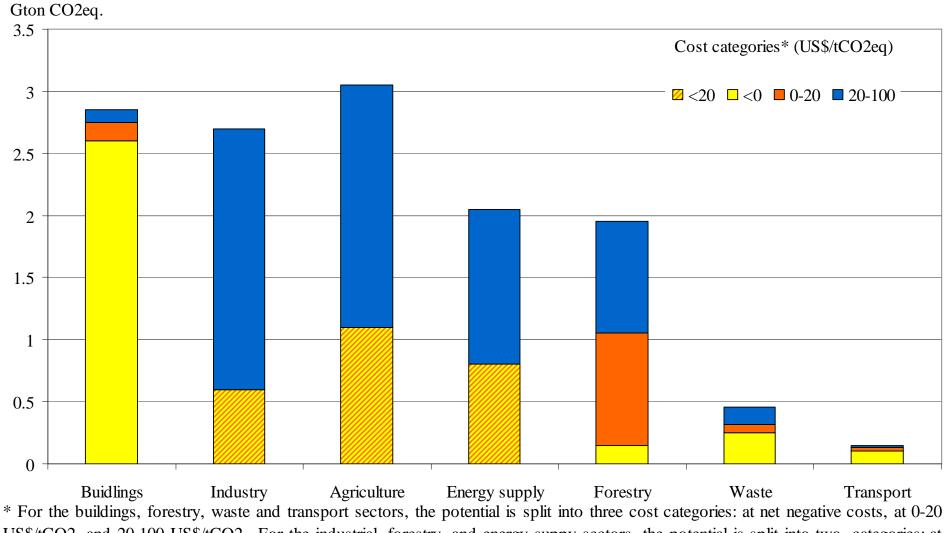
✤ In 2004, in Buildings were responsible for app. 1/3 of global CO2 emissions

CO2 emissions including through the use of electricity A1B scenario

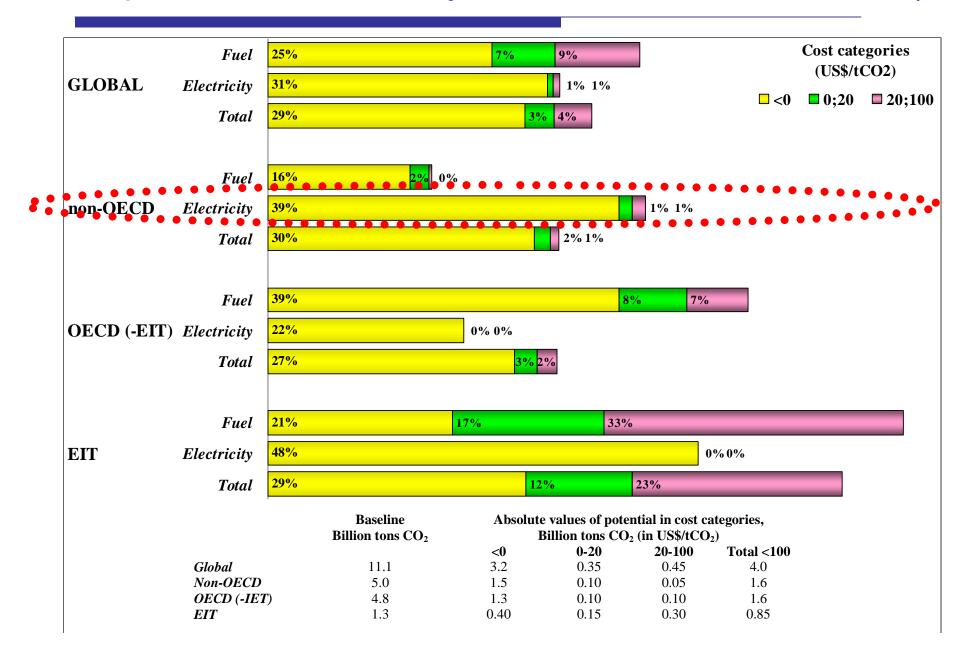
Potential and costs of GHG mitigation in developing countries



The importance of improved energy efficiency in GHG mitigation


If costs are taken into account, improved building efficiency becomes the most important instrument in our mitigation portfolio in the short- to mid-term

Sectoral economic potential for global mitigation for different regions as a function of carbon price, 2030



Estimated potential for GHG mitigation at a sectoral level in 2030 in different cost categories in developing countries

US\$/tCO2, and 20-100 US\$/tCO2. For the industrial, forestry, and energy suppy sectors, the potential is split into two categories: at costs below 20 US\$/tCO2 and at 20-100 US\$/tCO2.

Potential related to electric and fuel end-uses, 2020 (as shares of respective fuel- and electricity associated baseline CO2 emissions)

Countral		Tune of		Pot	ential	Measures with	A				
Country/ region	- Beterence	Type of potential	Description of mitigation scenarios		Baseline (%)	lowest costs	Measures with highest potential	Notes			
South Africa	De Villiers and Matibe,	Technical	21 options: light practices; new & retrofits HVAC; stoves, thermal envelope; fuel switch	41	23%	1. Energy star equipment;	 Hybrid solar water heaters; 	1] 6%; 4] Fr-ef.;			
	2000 De Villiers, 2000	Economic	in heaters; standards & labelling; for hot water: improved insulation, heat pumps, efficient use; solar heating.	37	20%	2. Lighting retrofit; 3. New lighting systems.	 New building thermal design; New HVAC systems. 	5] BY 2001; TY 2030.			
Croatia	UNFCCC NC1 of Croatia, 2001	Market	Electricity savings for not heating purposes (low energy bulbs, more efficient appliances, improved motors), solar energy use increase, thermal insulation improvement.	2	14%	 Bulbs & appliances; Solar energy use increase; Insulation improvement 	 Insulation improvement; Solar energy use increase; Bulbs & appliances. 	[1] n.a.			
Studies pro	viding informatio	on about both	n supply and demand-side options not separating	them							
New EU Member States®	Lechtenboh- mer et al., 2005	Economic	Improvement in space and water heating, appliances and lighting, cooling/freezing, air- conditioning, cooking, motors, process heat, renewable energies, reduced emissions from electricity generation.	81	37%	n.a. (not listed in the study)	R: 1.Insulation; 2.Heating systems, fuel switch, DH&CHP C: 1. Energy efficiency, 2. Renewables.	[1] 3-5%; [5] BY 2005; [7] C includes agriculture.			
USA	Koomey et al., 2001	Market	Voluntary labelling, deployment programmes, building codes, new efficiency standards, government procurement, implementation of tax credits, expansion of cost-shared federal R&D expenditures.	898	37%	n.a. (The study did not examine a GHG potential supply cost curve).	 Lighting; Space cooling; Space heating. 	[1] 7%; [5] BY 1997.			
Japan	Murakami et al., 2006	Technical	15 options: new and retrofit insulation, double glazing window, home appliances (water & space heating/cooling, lighting, cooking), PVs, solar heating, shift to energy efficient living style, low-carbon electricity generation.	46	28%	n.a. (not listed in the study)	 Water heater; Space heater; Home appliances. 	[1] n.a.; [7] R only.			
Germany	Martinsen et al., 2002	Technical	Two options: fuel switch from coal and oil to natural gas and biomass and heat insulation.	31	26%	n.a. (not listed in the study)	1.Heat insulation; 2.Fuel switch from coal & oil to gas & biomass.	[1] n.a.; [5] BY 2002; [7] R only.			

The importance of improved energy efficiency in GHG mitigation

- Energy efficiency is one of the most important options to reduce GHG emissions worldwide in the short- to mid-term
- If costs are taken into account, improved building efficiency becomes the most important instrument in our portfolio in the shortto mid-term
- The majority of technologies and know-how are widely available
- New buildings can achieve the largest savings
 - As much as 80% of the operational costs of standard new buildings can be saved through integrated design principles
 - Often at no or little extra cost
 - □ Hi-efficiency renovation is more costly, but possible

Co-benefits of GHG mitigation: *or how can Africa benefit?*

Co-benefits of improved energy-efficiency in buildings

- co-benefits are especially abundant and strong in the buildings sector
- Co-benefits are often not quantified, monetized, or even identified by the decision-makers
- Esp. true in developing countries due to insufficient research, a priority role of other problems
- However, in developing countries they will be the key reason to pursue mitigation options
- The overall financial value of co-benefits may be higher than the value of the energy savings benefits

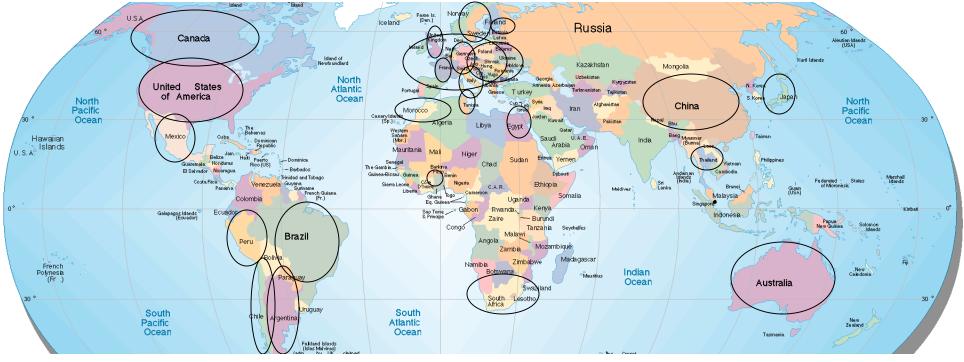
The key co-benefits for SSA

- Reduced morbidity and mortality
 - App. 2.2 million deaths attributable to indoor air pollution each year from biomass (wood, charcoal, crop residues and dung) and coal burning for household cooking and heating energy needs, in addition to acute respiratory infections in young children and chronic obstructive pulmonary disease in adults
 - In addition, women and children also bear the brunt of the work of collecting biomass fuel
- Poverty alleviation
 - Energy-efficient household equipment and low-energy building design helps households afford adequate energy services
 - Clean and efficient utilization of locally available renewable energy sources reduces/replaces the need for energy and fuel purchases, and improves energy security
- Employment creation
 - "producing" energy through energy efficiency or renewables is more employment intensive than through traditional ways
 - □ The European Commission estimates that a 20% reduction in EU energy consumption by 2020 can potentially create 1 mil new jobs in Europe, especially in the area of semi-skilled labour in the buildings trades
- new business opportunities
 - **E**.g. the ESCO industry is a lucrative business in many world regions
 - Ex. for developed countries the experts estimate a market opportunity of € 5–10 billion in energy service markets in Europe
- Reduced energy costs will make businesses more competitive
- Others:
 - Improved energy security
 - □ reduced burden of constrained capacities
 - Increased value for real estate
 - □ Improved energy services (lighting, thermal comfort, etc) can improve productivity

Why is early investment into energy-efficiency important?

Table 11.17: Observed and estimated lifetimes of major GHG-related capital stock

Typical lifetime of capital stock	Structures with influence > 100			
Less than 30 years	s than 30 years 30-60 years 60-100 years			
Domestic appliances Water heating and HVAC systems Lighting Vehicles	Agriculture Mining Construction Food Paper Bulk chemicals Primary aluminium Other manufacturing	Glass manufacturing Cement manufacturing Steel manufacturing Metals-based durables	Roads Urban infrastructure Some buildings	



Policies to capture the GHG mitigation potential in Africa

Background research

- Research questions:
 - □ Which policies achieve high energy savings and GHG reductions? Which are very costeffective? What are the success factors? How all these apply to developing countries?

©1994 Magellan GeographixSMSanta Barbara, CA (800) 929-4MAP

Robinson Projection

The impact and effectiveness of various policy instruments Part 1: Control and regulatory mechanisms- normative instruments

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Appliance standards	EU, US, JP, AUS, <mark>Br, Cn</mark>	High	Jp: 31 M tCO ₂ in 2010; Cn: 250 Mt CO ₂ in 10 yrs US: 1990-1997: 108 Mt CO2eq, in 2000: 65MtCO ₂ = 2.5% of el.use, Can: 8 MtCO ₂ in total by 2010, Br: 0.38 MtCO ₂ /year AUS: 7.9 MtCO ₂ by 2010	High	AUS: $-52 $ (tCO ₂ in 2020, US: $-65 $ (tCO ₂ in 2020; EU: $-194 $ (tCO ₂ in 2020) Mar: 0.008 (kWh	Factors for success: periodical update of standards, independent control, information, communication and education
Building codes	SG, Phil, Alg, Egy, US, UK, Cn, EU	High	HkG: 1% of total el.saved US: 79.6 M tCO ₂ in 2000; EU: 35-45 MtCO ₂ , up to 60% savings for new bdgs UK: 2.88 MtCO ₂ by 2010, 7% less en use in houses 14% with grants& labelling Cn: 15-20% of energy saved in urban regions	Medium	NL: from -189 $\frac{100}{100}$ NL: from -189 $\frac{100}{100}$ for endusers, 46-109 $\frac{100}{100}$ for Society	No incentive to improve beyond target. Only effective if enforced
Procurement regulations	US, EU, <mark>Cn, Mex,</mark> Kor, Jp	High	Mex: 4 cities saved 3.3 ktCO ₂ eq. in 1 year Ch: 3.6Mt CO ₂ expected EU: 20-44MtCO ₂ potential US:9-31Mt CO ₂ in 2010	High/ Medium	Mex: \$1Million in purchases saves \$726,000/year; EU: <21\$/tCO ₂	Factors for success: Enabling legislation, energy efficiency labelling and testing. Energy efficiency specifications need to be ambitious.
Energy efficiency obligations and quotas	UK, Be, Fr, I, Dk, Ir	High	UK: 2.6 M tCO ₂ /yr	High	Flanders: -216 $/tCO_2$ for households, -60 $/tCO_2$ for other sector in 2003. UK: -139 $/tCO_2$	Continuous improvements necessary: new energy efficiency measures, short term incentives to transform markets

`*••••••

The impact and effectiveness of various policy instruments Part 2: Regulatory- informative instruments

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Mandatory labelling and certification programs	US, Jp, CAN, Cn, AUS, Cr, EU, Mex, SA	High	AUS: 5 Mt CO_2 savings 1992-2000, 81Mt CO_2 2000-2015, SA: 480kt/yr Dk: 3.568Mt CO_2	High	AUS:-30\$/t CO ₂ abated	Effectiveness can be boosted by combination with other instrument, and regular updates.
Mandatory audit programs	US; Fr, NZL, <mark>Egy,</mark> AUS, Cz	High, variable	US: Weatherisation program: 22% saved in weatherized households after audits (30% according to IEA)	Medium/ High	US Weatherisation program: BC-ratio: 2.4	Most effective if combined with other measures such as financial incentives, regular updates, Stakeholder involvement in supervisory systems
Utility demand- side management programs	US, Sw, Dk, NI, De, Aut	High	US : 36.7 MtCO2in 2000, Jamaica: 13 GWh/ year, 4.9% less el use = 10.8 ktCO2 Dk: 0.8 MtCO2 Tha: 5.2 % of annual el sales 1996-2006	High	EU: - 255\$/tCO2 Dk: -209.3 \$/tCO2 US: Average costs app35 \$/tCO2 Tha: 0.013 \$/kWh	More cost-effective in the commercial sector than in residences, success factors: combination with regulatory incentives, adaptation to local heeds & market research, clear objectives

The impact and effectiveness of various policy instruments Part 3: Economic and market-based instruments

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Energy performance contracting/ ESCO support	De, Aut, Fr, Swe, Fi, US, Jp, Hu	High	Fr, S, US, Fi: 20-40% of buildings energy saved; EU:40-55MtCO ₂ by 2010 US: 3.2 MtCO ₂ /yr Cn: 34 MtCO ₂	Medium• / High	EU: mostly at no cost, rest at <22\$/tCO ₂ ; US: Public sector: B/C ratio 1.6, Priv. sector: 2.1	Strength: no need for public spending or market intervention, co-benefit of improved competitiveness.
Cooperative/ technology procurement	De, It, Sk, UK, Swe, Aut, Ir, US,Jp	High/Med ium	US: 96 ktCO ₂ German telecom company: up to 60% energy savings for specific units	Medium /High	US: - 118 \$/ tCO ₂ Swe: 0.11\$/kWh (BELOK)	Combination with standards and labelling, choose products with technical and market potential
Energy efficiency certificate schemes	lt, Fr	High	I: 1.3 MtCO ₂ in 2006, 3.64 Mt CO ₂ eq by 2009 expected	High	Fr: 0.011 \$/tCO ₂ estimated	No long-term experience. Transaction costs can be high. Adv. Institutional structures needed. Profound inter-actions with existing policies. Benefits for employment.
Kyoto Protocol flexible mechanisms	<mark>Cn, Tha</mark> , CEE (JI &AIJ)	Low	CEE: 220 K tCO2 in 2000 Estonia: 3.8-4.6 kt CO_2 (3 projects) Latvia: 830-1430 tCO ₂	Low	CEE: 63 \$/tCO ₂ Estonia: 41-57\$/tCO ₂ Latvia: -10\$/tCO ₂	So far limited number of CDM &JI projects in buildings. Success factors: Project bundling, Information & awareness campaigns, link to GIS

The impact and effectiveness of various policy instruments Part 4: Fiscal instruments and incentives

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Taxation (on CO2 or household fuels)	Nor, De UK, NL, Dk, Sw	Low/Medi um	De: household consumption reduced by 0.9 % 2003: 1.5 MtCO2 in total Nor: 0.1-0.5% 1987-1991 NL:0.5-0.7 MtCO2 in 2000 Swe: 5% 1991-2005, 3MtCO2	Low		Effect depends on price elasticity. Revenues can be earmarked for further efficiency. More effective when combined with other tools.
Tax exemptions/ reductions	US, Fr, NI, Kor	High	US: 88 MtCO2 in 2006 FR: 1Mt CO2 in 2002	High	US: B/C ratio commercial buildings: 5.4 New homes: 1.6	If properly structured, stimulate introduction of highly efficient equipment and new buildings.
Public benefit charges	BE, Dk, Fr, NI, US states	Medium/ Low	US: 0.1-0.8% of total el. sales saved /yr, 1.3 ktCO2 savings in 12 states NL: 7.4TWh in 1996 = 2.5 Mt CO2 Br: 1954 GWh	High in reporte d cases	US: From -53\$/tCO2 to - 17\$/tCO2	Success factors: Independent administration of funds, involvement of all stakeholders, regular evaluation/ monitoring& feedback, simple and clear progr. design, multi-year progrs
Capital subsidies, grants, subsidised loans	Jp, Svn, NL, De, Sw, US, <mark>Cn</mark> , UK, Ro	High/Med ium	Svn: up to 24% energy savings for buildings, BR: 169ktCO2 UK: 6.48 MtCO2 /year, 100.8 MtCO2 in total Ro: 126 ktCO2/yr	Low someti mes High	Dk: – 20\$/ tCO2 UK:29\$/tCO2 for soc, NL: 41-105\$/tCO2 for society	Positive for low-income households, risk of free-riders, may induce pioneering investments

The impact and effectiveness of various policy instruments Part 5: Support, information and voluntary action (to be cont.)

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Voluntary certification and labelling	De, Sw, US, Tha, Fr, Br	Medium/ high	Br: 6.5-12.2 MtCO2 1986- 2005, US: 13.2 MtCO2 in 2004, 884 MtCO2eq in total by 2012, Tha: 192 tCO2	High	US: from -53 to - 53 \$/tCO2 Br: 20 \$ Million saved	Effective with financial incentives, voluntary agreements and regulations, adaptation to local market is important.
Voluntary & negotiated agreements	Mainly Western Europe, Jp, US	Medium/ High	US: 88 MtCO2eq /yr US: 66.45 MtCO2eq in 2000 EU: 50 ktCO2, 100 GWh/yr (300 buildings) UK: 14.4Mt CO2, in 2004	Medium	Swe: 0.0166 \$/kWh	Can be effective when regulations are difficult to enforce. Effective if combined with financial incentives, and threat of regulation. Inclusion of most important manufacturers, and all stakeholders, clear targets, effective monitoring important
Public leadership programs	NZL, Mex, US, Phil, Arg, Br, Ecu, SA, De Ghana	Medium/ High	De: 25% public sector CO2 reduction in 15 yrs US: 2.3 ktCO2/yr Br: 6.5-12.2 MtCO2/ year Ghana: 27 MWh = 5tCO2 (14% of baseline) Mex:9.6 ktCO2/year (13% of baseline), 200 GWh/yr	High/ Medium	US DOE/FEMP estimates \$4 savings for every \$1 invested, EU: 13.5 billion \$ savings by 2020 SA: 0.06\$/kWh= 25\$/tCO2 Br: -0.07= -125 \$/tCO2	Can be used to demonstrate new technologies and practices. Mandatory programs have higher potential than voluntary ones. Clearly state, communicate and monitor, adequate funding and staff, involve building managers and experts

The impact and effectiveness of various policy instruments Part 5: Support, information and voluntary action (cont.)

Policy instrument	Country examples	Effec- tiveness	Energy or emission reductions for selected best practices	Cost- effectiv eness	Cost of GHG emission reduction for selected best practices	Special conditions for success, major strengths and limitations, co-benefits
Awareness, education, information	Dk, US, UK, Fr, CAN, Br, Jp, Swe	Low/ Medium	UK: 10.4ktCO2 annually Arg: 25% in 04/05, 355 ktep Fr: 40tCO2/ year Br: 2.23kt/yr, 6.5-12.2 MtCO2/ year with voluntary labeling 1986-2005 Swe: 3ktCO2/ year	Medium / High	Br: -66\$/tCO2; UK: 8\$/tCO2 (for all programs of Energy Trust)/ Swe: 0.018\$/kWh	More applicable in residential sector than commercial. Deliver understandable message and adapt to local audience.
Detailed billing & disclosure programs	Ontario, It, Swe, Fin, Jp, Nor, Aus, Cal, Can	Medium	Max.20% energy savings in households concerned, usually app. 5-10% savings UK: 3% Nor: 8-10 %	Medium		Success conditions: combination with other measures and periodic evaluation. Comparability with other households is positive.

Country name abbreviations: Alg - Algeria, Arg- Argentina, AUS - Australia, Aut - Austria, Be - Belgium, Br - Brazil, Cal - California, Can - Canada, CEE - Central and Eastern Europe, Cn - China, Cr - Costa Rica, Cz - Czech Republic, De - Germany, Ecu - Ecuador, Egy - Egypt, EU - European Union, Fin - Finland, GB-Great Britain, Hkg -Hong Kong, Hu - Hungary, Ind - India, Irl - Ireland, It - Italy, JP - Japan, Kor - Korea (South), Mar- Morocco, Mex - Mexiko, NL - Netherlands, Nor - Norway, Nzl – New Zealand, Phil - Philippines, Pol - Poland, Ro- Romania, SA- South Africa, SG - Singapore, Sk - Slovakia, Svn - Slovenia, Sw - Switzerland, Swe - Sweden, Tha - Thailand, US - United States.

Conclusion

- Improved energy-efficiency could contribute the largest share in our mitigation task in the short- and mid-term
- In addition to climate change benefits, improved energy-efficiency can advance several development goals as well as strategic economic targets
 - E.g. Poverty alleviation, health improvement, women&children, business opportunities and job creation, energy security
- Thus, if no other mitigation activity is pursued, energy-efficiency is still worth promoting
- However, due to the numerous barriers public policies are needed to unlock the potentials and to kick-start or catalise markets
- Several instruments have achieved large emission reductions at large net societal benefits, often at double or triple negative digit cost figures all over the world
- However, each new building constructed at an energy-wasting manner will lock SAA into an energy-wasting future – action now is important

Thank you for your attention!

Dr. Diana Ürge-Vorsatz

http://www.ceu.hu/envsci/staffDV.htm Email: vorsatzd@ceu.hu