Buildings: how far can they take us in mitigating climate change?

Diana Ürge-Vorsatz

Key messages

- Buildings are (the?) key to reaching ambitious mitigation targets...
- ...but they can also lock us into high(er) GHG concentration levels for many decades
 - more focus on retrofit is needed
 - Suboptimal retrofits and new construction are a major climate risk
- High performance buildings may also have the largest co-benefits among mitigation options
 3CSEP

The climate change mitigation challenge

"HOW ON EARTH DO WE TURN IT OFF?"

In order to limit the impacts of CC, GHG emissions have to be reduced significantly

- Stabilizing global mean temperature requires a stabilization of GHG concentrations in the atmosphere -> GHG emissions would need to peak and decline thereafter (SPM 18 WG III)
- The lower the target stabilisation level limit, the earlier global emissions have to peak.
- Limiting increase to 3.2 4°C requires emissions to peak within the next 55 years.
- Limiting increase to 2.8 3.2°C requires global emissions to peak within 25 years.
- Limiting global mean temperature increases to 2 – 2.4°C above preindustrial levels requires global emissions to peak within 15 years and then fall to about 50 to 85% of current levels by 2050.

3CSFP

Multigas and CO2 only studies combined

Probability distribution for the committed warming by GHGs between 1750 and 2005.

Shown are climate tipping elements and the temperature threshold range.

The later emissions peak, the more ambitious reductions needed

Buildings are key in climate change mitigation

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

CENTRAL EUROPEAN UNIVERSITY

The buildings sector offers the largest low-cost potential in all world regions by 2030

Few sectors can deliver the magnitude of emission reduction needed

know-how has recently developed that we can build and retrofit buildings to achieve 60 – 90% savings as compared to standard practice in all climate zones (providing similar or increased service levels)

250 - - 90%

Buildings utilising passive solar construction ("PassivHaus")

Source: Jan Barta, Center for Passive Buildings, www.pasivnidomy.cz

Few sectors can deliver the magnitude of emission reduction needed

- ❖ know-how has recently developed that we can build and retrofit buildings to achieve 60 − 90% savings as compared to standard practice in all climate zones (providing similar or increased service levels)
- Novel methods developed for mitigation potential assessment that considers buildings as complex systems rather than independent sums of components
- New scenarios are constructed under the Global Energy Assessment, with co-funding from UNEP SBCI, that reflect this new approach

Final thermal energy consumption in the world's buildings, 2005-2050

Using state-of-the-art and cost-effective construction know-how

Work in progress - not yet publishable

Work in progress - not yet publishable

Research

Watch out for the Global Energy

Watch out for the Global 2011

Opportunity or risk?

The size of the potential lock-in effect

Panelfelújítási programban részt vevő épületek fűtési fajlagos hőfelhasználásának alakulása (city of Sz in Hungary)

H: Homlokzati hőszigetelés

H: NY. Homlokzati hőszigetelés, nyílászáró csere

H: NY. F. Homlokzati hőszigetelés, nyílászáró csere, fűtéskorszerűsítés

■ 3 éves átlag korrigált fajlagos

■ 2007/2008. évi korrigált fajlagos

Source: Pájer Sándor, SZÉPHŐ Zrt., KLÍMAVÁLTOZÁS - ENERGIATUDATOSSÁG - ENERGIAHATÉKONYSÁG. V. Nemzetközi Konferencia, SZEGED, 2009. április 16-17.

The lock-in effect

Final world thermal energy consumption State-of-the-art vs. suboptimal retrofits

3CSEP

Sub-optimal scenario for the five regions: heating and cooling final energy use development for scenarios using sub-standard renovation and construction energy performance levels

Work in progress - not yet publishable

Work in progress - not yet publishable

Research

Watch out for the Global Energy

Watch out for the Global 2011

Final heating and cooling energy consumption 2005 – 2050, Western Europe

State-of-the-Art Scenario

Sub-Optimal Scenario

Work in Progress - not yet publishable
Work in Progress - not yet publishable

Work in Progress - not yet publishable

Release in 2011

Watch out for the Global 2011

Faloase in 2011

Final heating and cooling energy consumption 2005 - 2050, Centrally Planned Asia

State-of-the-Art Scenario

Sub-Optimal Scenario

Work in progress - not yet publishable

Work in progress - not yet publishable

Research

Watch out for the Global 2011

Watch out for the release in 2011

Co-benefits - the free lunch we are paid to eat...

CENTER FOR CLIMATE CHANGE AND SUSTAINABLE ENERGY POLICY

Co-benefits of energy-efficient buildings

Investment needs vs. energy cost savings, Hungarian tertiary sector

	Energy saving potential			CO ₂ reduction potential			Investment vs. savings	
	Business -as-usual in year 2030	Energy saving potenti al in year 2030	Energy saving potenti al in year 2030 (% of BAU)	Business -as-usual 2030	CO ₂ mitigatio n potential 2030	CO ₂ mitigatio n potential 2030 (% of BAU)	Total cumulativ e investmen t (2011-2030)	Cumulativ e energy cost savings (2011- 2030)
	GWh	GWh	GWh	kt CO ₂	kt CO ₂	kt CO ₂	Billion Euro	Billion Euro
Suboptimal accelerated	7 633	1 667	22%	1 518	331	22%	1.82	0.97
Passive 1%	7 633	1 518	20%	1 518	302	20%	0.84	0.88
Passive accelerated	7 633	5 572	73%	1 518	1 108	73%	2.62	3.24

Source: Katarina Korytarova, dissertation draft

In many countries, high-performance buildings are not primarily a green, but a social and economic agenda

- Fuel poverty is widespread in Europe
- According to a new study, app. 2500 lives are lost in Hungary alone each year
- By the UK definition, the average Hungarian household is fuel poor (has spent 10.4% of its disposable income on energy in 2007, it probably worsened since then)
- A widespread deep (!) building energy retrofit program can eliminate fuel poverty

EE as an economic/social agenda: employment and other economic benefits

- In energy-efficient buildings:
 - □ labor **productivity** rises by app. 6–16%;
 - students' test scores shows ~20–26% faster learning
 - ☐ Influenza and cold rates can decrease by as much as 20%, resulting in a USD10 bln/yr savings in US alone
 - ❖ better indoor environments related with building EE save annually in the US \$6 -14 bill.(reduced respiratory disease); \$1 - 4 bill. (reduced allergies and asthma); \$10 - 30 bill. (reduced sick building syndrome); and \$20 - 160 bill. (direct improvements in worker performance unrelated to health)
- Employment: (local) job creation: Danish trade union study finds twice higher employment intensity than for other mitigation options
- a wide-scale renovation program can create app. 250,000 net jobs in Hu alone (vs. the "1 million" estimated for the whole EU for the 20/20/20 target)
- ...and save 40% of Hungary's natural gas import needs

Climate Foundation

Recommendations for SBCI to consider focusing on

- avoiding the lock-in: recommended specific regional performance levels for state-of-the-art new construction and retrofit
- Quantification:
 - More study on the cost-effectiveness of deep renovations (tunneling effect?)
 - Regionally specific quantification of co-benefits (in monetary and other units)

Thank you for your attention

Diana Ürge-Vorsatz Diana

Center for Climate Change and Sustainable Energy Policy (3CSEP), CEU

http://3csep.ceu.hu www.globalenergyassessment.org

Email: vorsatzd@ceu.hu