Indirect regulation rule for consecutive stages of ecological succession
The lake ecosystem model 'Rostherne' allowed a theoretical insight into delayed causal relationships in aquatic ecosystems. Model simulations were used to demonstrate the possibility of influencing a species dominant at a later stage of ecological succession, by alleviating growth limitation of a different species, dominant at an earlier stage. Such delayed relationships are characteristic of various types of systems (including ecological), and can be illustrated by using a simple Stella model presented here. The stated indirect regulation rule for consecutive stages of ecological succession provides an important theoretical basis both for certain ecological manipulations and for the better understanding of various environmental relationships. It should, therefore, prove useful for theoretical analysis of system dynamics, studies of terrestrial and aquatic ecosystems, management of natural resources, Environmental Assessment and Auditing. (C) 2000 Elsevier Science B.V. All rights reserved.
Examination of the phytoplankton of Rostherne Mere using a simulation mathematical model
Changes of phytoplankton populations in Rostherne Mere in 1996 were examined by means of simulation mathematical models. Simple models, solely based on Monod or Michaelis Menten equations, failed to give a reasonable simulation of the phytoplankton succession. A more complex model Rostherne (version 1.1a) calibrated on an extensive set of XRMA and conventional data, however, proved to be useful both for prediction of the outcome of the spring and summer competition and for the estimation of values of certain non-measured variables. It also helped to identify the limiting factors for different times of the year. Alteration of the simulated magnitude of the spring diatom bloom had a major influence on summer cyanobacterial maxima, demonstrating fine regulation of the biogeochemical balance within the modelled system.
Application of SEM XRMA data to lake ecosystem modelling
The model Rostherne represents the first attempt to apply SEM XRMA (scanning electron microscopy X-ray microanalysis) data to lake ecosystem modelling. It considers subsystems proved to be most important for Rostherne mere (Cheshire, UK) with incorporation of uptake dependency of one nutrient upon internal deficiency in another. The model showed a reasonable fit (R-2 = 0.87, P < 0.001) between measured data and simulation curves for most of the considered variables (i.e. P, Si, chlorophyll-a and algal concentrations in the lake water, nutrient mass fractions of algal cells, etc.) and could, therefore, have been used to estimate some parameters and variables which were not measured otherwise (e.g. sedimentation and growth rates, etc.). The possibility of incorporating alternative expressions for the processes considered is discussed and tasks for future research in relation to coupling of Various submodels with the proposed submodel of nutrient uptake are envisaged. (C) 1998 Elsevier Science B.V. All rights reserved.